Table of integrals of squared Jacobian elliptic functions and reductions of related hypergeometric R-functions

نویسنده

  • B. C. Carlson
چکیده

Any product of real powers of Jacobian elliptic functions can be written in the form csm1 (u, k) ds2 (u, k) nsm3 (u, k). If all three m’s are even integers, the indefinite integral of this product with respect to u is a constant times a multivariate hypergeometric function R−a(b1, b2, b3; x, y, z) with halfodd-integral b’s and −a + b1 + b2 + b3 = 1, showing it to be an incomplete elliptic integral of the second kind unless all three m’s are 0. Permutations of c, d, and n in the integrand produce the same permutations of the variables {x, y, z} = {cs2, ds, ns2}, allowing as many as six integrals to take a unified form. Thirty R-functions of the type specified, incorporating 136 integrals, are reduced to a new choice of standard elliptic integrals obtained by permuting x, y, and z in RD(x, y, z) = R−3/2( 1 2 , 1 2 , 3 2 ; x, y, z), which is symmetric in its first two variables and has an efficient algorithm for numerical computation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moments of Ramanujan’s Generalized Elliptic Integrals and Extensions of Catalan’s Constant

We undertake a thorough investigation of the moments of Ramanujan’s alternative elliptic integrals and of related hypergeometric functions. Along the way we are able to give some surprising closed forms for Catalan-related constants and various new hypergeometric identities.

متن کامل

Transformations of hypergeometric elliptic integrals

The paper classifies algebraic transformations of Gauss hypergeometric functions with the local exponent differences (1/2, 1/4, 1/4), (1/2, 1/3, 1/6) and (1/3, 1/3, 1/3). These form a special class of algebraic transformations of Gauss hypergeometric functions, of arbitrary high degree. The Gauss hypergeometric functions can be identified as elliptic integrals on the genus 1 curves y = x − x or...

متن کامل

Essays on the Theory of Elliptic Hypergeometric Functions

We give a brief review of the main results of the theory of elliptic hypergeometric functions — a new class of special functions of mathematical physics. We prove the most general univariate exact integration formula generalizing Euler’s beta integral, which is called the elliptic beta integral. An elliptic analogue of the Gauss hypergeometric function is constructed together with the elliptic ...

متن کامل

Classical Elliptic Hypergeometric Functions and Their Applications

General theory of elliptic hypergeometric series and integrals is outlined. Main attention is paid to the examples obeying properties of the “classical” special functions. In particular, an elliptic analogue of the Gauss hypergeometric function and some of its properties are described. Present review is based on author’s habilitation thesis [Spi7] containing a more detailed account of the subject.

متن کامل

Limits of elliptic hypergeometric integrals

In [16], the author proved a number of multivariate elliptic hypergeometric integrals. The purpose of the present note is to explore more carefully the various limiting cases (hyperbolic, trigonometric, rational, and classical) that exist. In particular, we show (using some new estimates of generalized gamma functions) that the hyperbolic integrals (previously treated as purely formal limits) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2006